Lecture 6. Poisson regression - Random points in space 1

Igor Rychlik
Chalmers
Department of Mathematical Sciences

Probability, Statistics and Risk, MVE300 • Chalmers • April 2013
${ }^{1}$ Section 7.1.2 is not included in the course.

Counting number of events N :

Data: Suppose we have observed values of N_{1}, \ldots, N_{k}, which are equal to $n_{1}, n_{2}, \ldots, n_{k}$, say. The first assumption is that N_{i} are independent Poisson with constant mean m (the same as N has). Suppose that the test for over-disperion leads to rejection of the hypothesis that N_{i} are iid Poisson. Overdispertion can be caused by variable mean of N_{i} or that Poisson model is wrong. What can we do?

The first step is to assume that N_{i} are Poisson but have different expectations m_{i}.

Little help for predicting future unless one can model variability of m_{i} !

Check Exposure:

When we compared number of perished in traffic 1998 in US ($N_{\text {US }}$) and Sweden ($N_{S E}$) the numbers were very different (14500, 500, resp.). This was explained by different numbers of peoples leaving in the countries.

In order to compare risks one tries to find a suitable measure of exposure to the hazard and study the rate of accidents ${ }^{2}$. For example in case of traffic a particularly useful measure of exposure is the total number of kilometers driven during a year. In other situations, e.g. in biology, one may count the number of tree species in a forest, and the rate would be the number of species per square kilometer.

We found that 1998 the rate in US was about 1 person per $100 \cdot 10^{6} \mathrm{~km}$ driven while in Sweden, 1 per $125 \cdot 10^{6} \mathrm{~km}$. The rates are close but (is the difference significant or could one assume that rates in both countries are the same?)

[^0]
Simple case of two counts N_{1} and N_{2} :

Suppose that $N_{i} \in \operatorname{Po}\left(m_{i}\right), i=1,2$. In general $m_{1} \neq m_{2}$. There are two natural simple models for m_{i} :

- Model I: $m_{1}=m_{2}=m$
- Model II: $m_{1}=\lambda t_{1}$ and $m_{2}=\lambda t_{2}$.

Here t_{1}, t_{2} are known exposures for the two counts.

Two hypothesis are of interest: does the data contradicts Model I or Model II? If yes then and one draws conclusion that m_{1} and m_{2} need to be estimated separately.

We will present a test quantity, called Deviance, which is a difference between values of the log-likelihoods for the compared models. Let first recall the ML-estimation of parameters in Poisson distribution.

Parametric modeling - log-likelihood $I(\theta)=\ln (L(\theta))$:

Suppose $N_{i} \in \operatorname{Po}\left(m_{i}\right), i=1, \ldots, k$, are independent and that one has observed $N_{i}=n_{i}$. In general m_{i} can take different values.

Schema how to define log-likelihood function:

$$
I(\theta): \theta \longmapsto\left(m_{1}, \ldots, m_{k}\right) \longmapsto I\left(m_{1}, \ldots, m_{k}\right),{ }^{3}
$$

where θ is a parameter (or vector of parameters). Functions $m_{i}(\theta)$ are models of the expected value variability.

Examples:

- 1) $\theta=m, \quad m_{i}(\theta)=m ;$
- 2) $\theta=\left(\beta_{0}, \beta_{1}\right), \quad m_{i}(\theta)=\exp \left(\beta_{0}+\beta_{1} \cdot i\right)$
- 3) $\theta=\left(m_{1}, \ldots, m_{k}\right), \quad m_{i}(\theta)=m_{i}$.

$$
{ }^{3} l\left(m_{1}, \ldots, m_{k}\right)=\sum n_{i} \ln m_{i}-\sum m_{i}-\sum \ln n_{i}!
$$

Finding ML-estimates θ^{*} of parameters:

The ML-estimate θ^{*} of θ is the solution of equation system $i\left(\theta^{*}\right)=0$. For example:

- 1) $\theta=m, \quad \theta^{*}=\sum n_{i} / k$.
- 2) $\theta=\left(\beta_{0}, \beta_{1}\right), \beta_{0}^{*}, \beta_{1}^{*}$ has to be solved numerically.
- 3) $\theta=\left(m_{1}, \ldots, m_{k}\right), \quad m_{i}^{*}=n_{i}$.

Which model should one choose?

Intuitively - likelihood corresponds to odds for parameters: if fraction of likelihood $L\left(\theta_{1}\right) / L\left(\theta_{2}\right) \gg 1$ it means that we believe much more in the first values of parameters than in the second ones. Now

$$
L\left(\theta_{1}\right) / L\left(\theta_{2}\right) \gg 1 \Longleftrightarrow \ln \left(L\left(\theta_{1}\right) / L\left(\theta_{2}\right)\right)=I\left(\theta_{1}\right)-I\left(\theta_{2}\right) \gg 0
$$

Deviance:

Suppose we wish to choose between a simple model (marked ${ }_{s}$) and more complex one (marked ${ }_{c}$) (which include simpler model as a special case).

$$
\begin{aligned}
\theta_{\mathbf{c}} & \longmapsto\left(m_{1}\left(\theta_{\mathbf{c}}\right), \ldots, m_{k}\left(\theta_{\mathbf{c}}\right)\right) \longmapsto I\left(\theta_{\mathbf{c}}\right), \\
\theta_{\mathbf{s}} & \longmapsto\left(m_{1}\left(\theta_{\mathbf{s}}\right), \ldots, m_{k}\left(\theta_{\mathbf{s}}\right)\right) \longmapsto I\left(\theta_{\mathbf{s}}\right),
\end{aligned}
$$

The maximum likelihood of the parameters are θ_{s}^{*} and θ_{c}^{*} and the values of \log likelihoods

$$
\begin{aligned}
I\left(\theta_{\mathrm{c}}^{*}\right) & =\sum n_{i} \ln m_{i}\left(\theta_{\mathrm{c}}^{*}\right)-\sum n_{i}-\sum \ln n_{i}!. \\
I\left(\theta_{\mathrm{s}}^{*}\right) & =\sum n_{i} \ln m_{i}\left(\theta_{\mathrm{s}}^{*}\right)-\sum n_{i}-\sum \ln n_{i}!
\end{aligned}
$$

$$
\text { If } \mathrm{DEV}=2\left(I\left(\theta_{\mathrm{c}}^{*}\right)-I\left(\theta_{\mathrm{s}}^{*}\right)\right)=2 \sum n_{i}\left(\ln m_{i}\left(\theta_{\mathrm{c}}^{*}\right)-\ln m_{i}\left(\theta_{\mathrm{s}}^{*}\right)\right)>\chi_{\alpha}^{2}(f)
$$

then more complex model explains data better than the simpler one does (with approximative significance $1-\alpha$). Here f is the difference between the dimensions of θ_{c} and θ_{s}. In our example simple model has dimension 1 while the complex dimension k hence $f=k-1$.

Numbers of perished in traffic 1998 in US and Sweden

Let $N_{U S} \in \operatorname{Po}\left(m_{U S}\right), N_{S E} \in \operatorname{Po}\left(m_{S E}\right)$. Observed numbers are about $n_{U S}=41500$ while $n_{S E}=500$. Exposures were $t_{U S}=4.14 \cdot 10^{12}$, $t_{S E}=0.0625 \cdot 10^{12}[\mathrm{~km}]$, respectively.

- The "simple model" postulates that the rates of fatal accidents are the same in both countries, i.e. $m_{U S}=\lambda \cdot t_{U S}$ and $m_{S E}=\lambda \cdot t_{S E}$.

$$
\lambda^{*}=\frac{n_{U S}+n_{S E}}{t_{U S}+t_{S E}}=0.9994 \cdot 10^{-8}, \quad\left[\mathrm{~km}^{-1}\right]
$$

- The "complex model" is that the rates are different, i.e.

$$
m_{U S}=\lambda_{U S} \cdot t_{U S} \text { and } m_{S E}=\lambda_{S E} \cdot t_{S E}
$$

$$
\lambda_{U S}^{*}=\frac{n_{U S}}{t_{U S}}=1.000 \cdot 10^{-8}, \quad \lambda_{S E}^{*}=\frac{n_{S E}}{t_{S E}}=0.8 \cdot 10^{-8}\left[\mathrm{~km}^{-1}\right]
$$

(Deviance will be computed on the blackboard!) ${ }^{4}$
${ }^{4} \mathrm{DEV}=27.51, f=2-1$, with $\alpha=0.01, \mathrm{DEV}>\chi_{\alpha}^{2}(1)=6.635$, we reject hypothesis that rates in US and Sweden are the same.

Numbers of railway accidents

Authorities are interested in the impact of usage of different track types. Data consists of derailments of passenger trains 1 January 1985-1 May 1995. There were $n_{1}=15$ derailments on welded track with concrete sleepers and $n_{2}=25$ welded track with wooden sleepers. Assume that $N_{1} \in \operatorname{Po}\left(m_{\text {con }}\right)$ while $N_{2} \in \operatorname{Po}\left(m_{\text {wod }}\right)$ are independent.

- The "simple model" is that $m_{\text {con }}=m_{\text {wod }}=m$

$$
m^{*}=\frac{n_{c o n}+n_{w o d}}{2}=20
$$

- The "complex model" is that the means are different, i.e.
$m_{\text {con }} \neq m_{\text {wod }}$

$$
m_{c o n}^{*}=n_{c o n}=15, \quad m_{w o d}^{*}=n_{w o d}=25
$$

$$
\mathrm{DEV}=2 \cdot 15(\ln 15-\ln 20)+2 \cdot 25(\ln 25-\ln 20)=2.53<\chi_{0.05}^{2}(1)=3.84
$$

The complex model is not better. Are both truck equally safe? ${ }^{5}$
${ }^{5}$ No, $t_{\text {con }}=4.21 \cdot 10^{8}, t_{\text {wod }}=0.8 \cdot 10^{8},[\mathrm{~km}], \mathrm{DEV}=40.9$

Perished in traffic 1990-2000:

N_{i} - number of peoples killed in traffic year $1990-2000$.
t_{i} - total driven distance, in $10^{9} \mathrm{~km}$,

Suppose that $N_{i} \in \operatorname{Po}(m)$ (impossible but let test) $\bar{n}=622.6$ while $s_{k-1}^{2}=8487.5$ then approximate confidence interval for $\mathrm{V}[\mathrm{N}] / \mathrm{E}[N]$ is

$$
(0.024=) \frac{\bar{n}}{s_{k-1}^{2}} \frac{\chi_{1-\alpha / 2}^{2}(k-1)}{k-1} \leq \frac{\mathrm{V}[N]}{\mathrm{E}[N]} \leq \frac{\bar{n}}{s_{k-1}^{2}} \frac{\chi_{\alpha / 2}^{2}(k-1)}{k-1}(=0.15)
$$

Modelling:

Data: for $i=-5,-4, \ldots, 4,5$:

$$
\left.\begin{array}{c}
n_{i}:\left[\begin{array}{llllllllll}
772 & 745 & 759 & 632 & 589 & 572 & 537 & 541 & 531 & 580
\end{array}\right] \\
t_{i}:\left[\begin{array}{lllllllll}
64.3 & 64.9 & 65.5 & 64.1 & 64.9 & 66.1 & 66.5 & 66.7 & 67.4
\end{array}\right. \text { 69.6}
\end{array}\right]
$$

Modelling $\mathrm{E}\left[N_{i}\right]=m_{i}$, viz. define a function: $\theta \longmapsto\left(m_{1}, \ldots, m_{k}\right)$:

- 1) $\theta_{\mathbf{s} 1}=\left(\beta_{0}, \beta_{1}\right), \quad m_{i}(\theta)=\exp \left(\beta_{0}+\beta_{1} \cdot i\right)$
- 2) $\theta_{\mathbf{s} 2}=\left(\beta_{0}, \beta_{1}, \beta_{2}\right), \quad m_{i}(\theta)=\exp \left(\beta_{0}+\beta_{1} \cdot i+\beta_{2} \cdot t_{i}\right)$
- 3) $\theta_{\mathbf{c}}=\left(m_{1}, \ldots, m_{k}\right), \quad m_{i}(\theta)=m_{i}$.

ML-estimates are:

- $\left(\beta_{0}^{*}, \beta_{1}^{*}\right)=(6.42,-0.0364)$ which means about 3% yearly decrease;
- $\left(\beta_{0}^{*}, \beta_{1}^{*}, \beta_{2}^{*}\right)=(0.85,-0.0828,0.084)$ which means about 8% yearly decrease but also 8% increase if the total driving length increases by $10^{9} \mathrm{~km}$ during one year.

Choice of model:

$\mathrm{DEV}_{1}=2\left(I\left(\theta_{\mathrm{c}}^{*}\right)-I\left(\theta_{\mathrm{s} 1}^{*}\right)\right)=42.25$
compare with $\chi_{0.05}^{2}(9)=16.92$ (rejection
of the simple model!).
$\mathrm{DEV}_{2}=2\left(I\left(\theta_{\mathrm{c}}^{*}\right)-I\left(\theta_{\mathrm{s} 2}^{*}\right)\right)=6.99$ compare with $\chi_{0.05}^{2}(8)=15.51($ Good model!).

A general Poisson process

Let $N(B)$ denote the number of events (or accidents) occurring in a region B. Consider the following list of assumptions:
(A) More than one event can not happen simultaneously.
(B) $N\left(B_{1}\right)$ is independent of $N\left(B_{2}\right)$ if B_{1} and B_{2} are disjoint.
(C) Events happen in a stationary (time) and homogeneous (space) way, i.e. $N(B)$ cdf depends only on size $|B|$ of B.
The process for which we can motivate that ($\mathrm{A}-\mathrm{B}$) are true is called a Poisson point process. It is a stationary (homogenous) process with constant intensity λ if $(\mathrm{A}-\mathrm{C})$ holds and $N(B) \in \operatorname{Po}(\lambda|B|)$.

Figure: $N(B)=11$ while $N\left(B_{1}\right)=2, N\left(B_{2}\right)=3$.

Some actual history - Bombing raids on London

During the bombing raids on London in World War II, one discussed whether the impacts tended to cluster or if the spatial distribution could be considered random. This was not merely a question of academic interest; one was interested in whether the bombs really targeted (as claimed by Germans) or fell at random ${ }^{6}$.
An area in the south of London was divided into 576 small areas of $1 / 4$ km^{2} each; the Poisson distribution was found to be a good model.

[^1]
Checking for the constant intensity:

The region is $5.7 \times 5.7 \mathrm{~m}^{2}$, and refered to
 as one area unit (au). There are 65 pines in the region, i.e. $\lambda^{*}=65 \mathrm{au}^{-1}$. Divide the region in 25 smaller squares, each of size $0.2 \cdot 0.2=0.04 \mathrm{au}^{1}$. It is expected in average $0.04 \cdot 65=2.6$ trees in each of smaller regions, since homogeneity of trees locations. The true number differs from the average and their variability is modelled as 25 independent $\mathrm{Po}(2.6) \mathrm{rv}$.

It was found 1, 5, 4, 11, 2, 1, 1 regions containing $0,1,2,3,4,5,6$ pines. The probability-mass function for $\mathrm{Po}(2.6)$ is $p_{k}=2.6^{k} \exp (-2.6) / k!$ and hence one expects to have $25 \cdot p_{i}$ smaller regions to contain k plants. Since $Q=8.1<\chi_{0.05}^{2}(7-1-1)=11.07$, the hypothesis about Poisson distribution cannot be rejected. ${ }^{7}$

$$
{ }^{7} Q=\left(1-25 p_{0}\right)^{2} / 25 p_{0}+\left(5-25 p_{1}\right)^{2} / 25 p_{1}+\ldots+\left(1-25 p_{6}\right)^{2} / 25 p_{6}=8.1
$$

Decomposition of Poisson process:

Suppose A that is true at point S_{i} which form PPP with intensity λ.
Let B be a scenario which can be true or false when A occurs. At each point S_{i} we put a mark "star" if B is true. All remaining S_{i} (when B is false) are marked by dots ; see Figure.

If B is independent of the PPP A, then the point processes of stars and dots are independent Poisson having intensities $\mathrm{P}(B) \lambda$, $(1-\mathrm{P}(B)) \lambda$, respectively.

Example:

The number of pines damaged due to pollution was investigated. Let
$A=$ "20 years or older pine has more than 20% of needles damaged"
define a point process with intensity λ. We find it reasonable to assume that it is a PPP. Consider the scenario
$B=$ "Pine is old (diameter exceeding some limit) and hence protected".

When A and B are true, a protected pine was damaged due to pollution.
Assume that forestry policy requires to have one old protected pine per hundred of pines (20 years or older). If the probability that a (20 -year old or older) pine is damaged is independent of its age, then the point process of old and damaged pines is a PPP with intensity

$$
\lambda_{\text {old }}=\lambda P(B)=\lambda \frac{1}{100} .^{8}
$$

[^2]
Superposition of Poisson process:

It is not surprising that the reverse operation of superposition of two (or more) independent Poisson processes gives a Poisson process.

Assume that we have two independent Poisson point-processes S_{i}^{\prime} and $S_{i}^{\prime \prime}$ with intensities $\lambda^{\prime}, \lambda^{\prime \prime}$, respectively. Consider a point process S_{i} which is a union of the point processes S_{i}^{\prime} and $S_{i}^{\prime \prime}$. (If $S_{i}^{\prime}, S_{i}^{\prime \prime}$ are marked by stars, dots, respectively, replace all symbols with a ring (०) and let S_{i} be positions of rings.) The point process of S_{i} is a superposition of the two processes and is a PPP itself, with intensity $\lambda=\lambda^{\prime}+\lambda^{\prime \prime}$.

In this lecture we met following concepts:

- Deviance, used to select model that best fits data.
- Poisson regression.
- Poisson point process in space.

[^0]: ${ }^{2}$ Rate is a count of events occurring to a particular unit of observation, divided by some measure of that unit's exposure.

[^1]: ${ }^{6}$ This problem has even influenced literary texts, as the following excerpt from Pynchon's Gravity's Rainbow,

 Roger has tried to explain to her the V-bomb statistics; the difference between distribution, in angel's-eye view, over the map of England, and their own chances, as seen from down there. She's almost got it, nearly understands his Poisson
 equation. . . ". . . Couldn't there be an equation for us
 too,..."... ". . . There is no way, love, not as long as the mean density of the strikes is constant ..."

[^2]: ${ }^{8}$ For example, if $\lambda^{*}=10000\left[\mathrm{~km}^{-2}\right]$ and 5% of trees are damaged then the intensity $\lambda_{\text {old }}=5\left[\mathrm{~km}^{-2}\right]$.

