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1Bayesian statistics is a general methodology to analyse and draw
conclusions from data.



P = P(accidents happen in period t) = 1−e−λA P(B) t ≈ λA P(B) t,

if probability P is small. Hence Two problems of interest in risk analysis:

I The first one will deal with the estimation of a probability
pB = P(B), say, of some event B, for example the probability of
failure of some system. In figure B = B1 ∪ B2, B1 ∩ B2 = ∅

I The second one is estimation of the probability that at least once an
event A occurs in a time period of length t. The problem reduces
itself to estimation of the intensity λA of A.

’

The parameters pB and λA are unknown.
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Figure: Events A at times Si with related scenarios Bi .



Odds for parameters

Let θ denote the unknown value of pB , λA or any other quantity.

Introduce odds qθ, which for any pair θ1, θ2 represents our belief
which of θ1 or θ2 is more likely to be the unknown value of θ, i.e.
qθ1 : qθ2 are odds for the alternatives A1 = “θ = θ1” against
A2 = “θ = θ2”.

We require that qθ integrates to one and hence f (θ) = qθ is a
probability density function representing our belief about the value
of θ. The random variable Θ having the pdf serves as a
mathematical model for uncertainty in the value of θ.



Prior odds - posterior ods

Let θ be the unknown parameter (θ = pB , θ = λA), while Θ denotes any
of the variables P or Λ. Since θ is unknown, it is seen as a value taken by
a random variable Θ with pdf f (θ).

If f (θ) is chosen on basis of experience without including observations of
outcomes of an experiment then the density f (θ) is called a prior density
and denoted by f prior(θ).

Since our knowledge may change with time (especially if we observe some
outcomes of the experiment) influencing our opinions about the values of
parameter θ. This leads to new odds - density f (θ). The modified density
f (θ) will be called the posterior density and denoted by f post(θ).

The method to update f (θ) is

f post(θ) = cL(θ) f prior(θ)

How to find likelihood function L(θ) will be discussed later on.



Predictive probability

Suppose f (p) has been selected and denote by P a random variable
having pdf f (p). A plot of f (p) is an illustrative measure of how likely
the different values of pB are.

If only one value of the probability is needed, the Bayesian methodology
proposes to use the so-called predictive probability which is simply the
mean of P:

Ppred(B) = E[P] =

∫
pf (p)dp.

The predictive probability measures the likelihood that B occurs in
future. It combines two sources of uncertainty: the unpredictability
whether B will be true in a future accident and the uncertainty in the
value of probability pB .

Example 6.1



P(A ∩ B) = P(accidents in period t) = 1− e−λA P(B) t ≈ λA P(B) t,

if probability P(A ∩ B) is small.

The predictive probabilities

Ppred(A) = E[P(A)] =

∫
(1− exp(−λ t))fΛ(λ)dλ

≈
∫

tλfΛ(λ)dλ = tE[Λ].2

Ppred(A ∩ B) =

∫
(1− exp(−pλ t))fΛ(λ)fP(p)dλ dp

≈
∫

t pλfΛ(λ)fP(p)dλ dp = tE[Λ]E[P].

Example 6.2

2For small x , 1 − exp(−x) ≈ x .



Credibility intervals:

I In the Bayessian approach the lack of knowledge of parameter value
θ is described using the probability densities f (θ) (odds). Random
variable Θ having the pdf f (θ) models our knowledge about θ.

I The initial knowledge is described using f prior(θ) density and as the
data are gathered it is updated

f post(θ) = c L(θ)f prior(θ).

I The pdf f post(θ) summarizes our knowledge about θ. However if
one value of for the parameter is needed then

θpredictive = E[Θ] =

∫
θf post(θ) dθ.

I If one wishes to describe the variability of θ by means of an interval
then the so called credibility interval can be computed

[ θ
post
1−α/2, θ

post
α/2 ]



Gamma-priors:

Conjugated priors are families of pdf for Θ which are particularly
convenient for recursive updating procedures, i.e. when new observations
arrive at different time instants. We will use three families of conjugated
priors:
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Gamma pdf:

Θ ∈ Gamma(a, b), a, b > 0, if

f (θ) = c θa−1e−bθ, θ ≥ 0, c =
ba

Γ(a)
.

The expectation, variance and coefficient of variation for Θ ∈ Gamma(a, b)
are given by

E[Θ] =
a

b
, V[Θ] =

a

b2
, R[Θ] =

1√
a
.



Updating Gamma priors:'
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The Gamma priors are conjugated priors for the problem of estimating the
intensity in a Poisson stream of events A. If one has observed that in time t̃
there were k events reported and if the prior density f prior(θ) ∈ Gamma(a, b),
then

f post(θ) ∈ Gamma(ã, b̃), ã = a + k , b̃ = b + t̃.

Further, the predictive probability of at least one event A during a period of
length t is given by

Ppred(A) ≈ tE[Θ] = t
ã

b̃

In Example 6.2 the f prior(θ) was exponential with mean 1/30 [days−1].
This is Gamma(1,30) pdf. Suppose that in 10 days we have not observed
any accidents then posteriori density f post(θ) is Gamma(1,40). Hence

Ppred(A) ≈ t

40
.



Conjugated Beta-priors:
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Beta probability-density function (pdf):

Θ ∈ Beta(a, b), a, b > 0, if

f (θ) = c θa−1(1− θ)b−1, 0 ≤ θ ≤ 1, c =
Γ(a + b)

Γ(a)Γ(b)
.

The expectation and variance of Θ ∈ Beta(a, b) are given by

E[Θ] = p, V[Θ] =
p(1− p)

a + b + 1
,

where p = a/(a + b). Furthermore, the coefficient of variation

R(Θ) =
1√

a + b + 1

√
1− p

p
.



Updating Beta-priors:'

&

$

%

The Beta priors are conjugated priors for the problem of estimating the prob-
ability pB = P(B).

Let θ = pB . If one has observed that in n trials (results of experiments), the
statement B was true k times and if the prior density f prior(θ) ∈ Beta(a, b)
then

f post(θ) ∈ Beta(ã, b̃), ã = a + k , b̃ = b + n − k.

Ppred(B) =

∫ 1

0

θf post(θ) dθ =
ã

ã + b̃
.

Consider example of treatment of waste water. Let p be the probability
that water is sufficiently cleaned after a week of treatment. If we have no
knowledge about p we could use the uniform priors. It is easy to see that
it is Beta(1,1) pdf.
Suppose that 3 times water was well cleaned and 2 times not. This
information gives the posterior density Beta(4,3) and the predictive
probability that water is cleaned in one week is 4/7.



Conjugated Dirichlet-priors:
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Dirichlet’s pdf:

Θ = (Θ1,Θ2) ∈ Dirichlet(a), a = (a1, a2, a3), ai > 0, if

f (θ1, θ2) = c θa1−1
1 θa2−1

2 (1− θ1 − θ2)a3−1, θi > 0, θ1 + θ2 < 1,

where c = Γ(a1+a2+a3)
Γ(a1)Γ(a2)Γ(a3) . Let a0 = a1 + a2 + a3; then

E[Θi ] =
ai
a0
, V[Θi ] =

ai (a0 − ai )

a2
0(a0 + 1)

, i = 1, 2.

Furthermore the marginal probabilities are Beta distributed, viz.

Θi ∈ Beta(ai , a0 − ai ), i = 1, 2.



Updating Dirichlet’s priors.
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The Dirichlet priors are conjugated priors for the problem of estimating the
probabilities pi = P(Bi ), i = 1, 2, 3, Bi are disjoint, p1 + p2 + p3 = 1.

Let θi = pi . If one has observed that the statement Bi was true ki times
in n trials and the prior density f prior(θ1, θ2) ∈ Dirichlet (a),

f post(θ1, θ2) ∈ Dirichlet (ã), ã = (a1 + k1, a2 + k2, a3 + k3),

where k3 = n − k1 − k2. Further

Ppred(Bi ) = E[Θi ] =
ãi

ã1 + ã2 + ã3
.

Let B1=”player A wins”, B2=”player B wins” (there is possibility of
draw). If we do not know strength of players we could use uniform priors
which corresponds to Dirichlet(1,1,1) pdf. Now we observed that in two
matches A won twice, hence the posteriori density is Dirichlet(3,1,1) and
the predictive probability that A wins the next match is then 3/5.



Posterior pdf for large number of observations.
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If f prior(θ0) > 0 then Θ ∈ AsN(θ∗, (σ∗E)2) as n → ∞, where θ∗ is the ML

estimate of θ0 and σ∗E = 1/
√
−l̈(θ∗).

It means that

f post(θ) ≈ c exp
( 1

2
l̈(θ∗)(θ − θ∗)2

)
= c exp

(
−1

2

(
(θ − θ∗)2/(σ∗E)2

))
.

Sketch of proof:

l(θ) ≈ l(θ∗) + l̇(θ∗)(θ − θ∗) +
1

2
l̈(θ∗)(θ − θ∗)2.

Now likelihood function L(θ) = el(θ) and l̇(θ∗) = 0, thus

L(θ) ≈ exp

(
l(θ∗) + l̇(θ∗)(θ − θ∗) +

1

2
l̈(θ∗)(θ − θ∗)2

)
= c exp

(1

2
l̈(θ∗)(θ − θ∗)2).

As n increases, l̈(θ∗) decreases to minus infinity. The decay is so fast that the
prior density can be replaced by a constant.



Example earthquake data:
We have demonstrated that time between earthquakes is Exp(a). Here it
is more convenient to use parameter θ = 1/a, i.e. the intensity of
earthquakes. The ML estimate θ∗ = 1/x̄ and l̈(θ) = −n/θ2. Since
x̄ = 437.2 days we have that θ∗ = 364/437.2 = 0.8395 years−1, while

(σ∗E)2 =
(θ∗)2

n
= 0.0112.

Consequently Θ∗ ≈ N(0.8395, 0.0112). This can be used to give approx.
confidence interval for θ or p = P(T > 4.1) = exp(−4.1 θ).
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Intensity of earthquakes

Let use non-informative priors
f prior(θ) = 1/θ then the gamma posterior

density has parameters a = 62 and
b = (437.2/365) · 62 = 74.26;

f post(θ) ∈ Gamma(62, 74.26) (solid line):
Asymptotic normal posterior pdf
N(0.8395, 0.0112) (dotted line).



Transport of nuclear fuel waste

Spent nuclear fuel is transported by railroad. From historical data, one
knows that there were 4 000 transports without a single release of
radioactive material. Since fuel waste is highly dangerous, one has
discussed the possibility of constructing a special (very safe and
expensive) train to transport the spent fuel.

One problem was the definition of an acceptable risk pacc for an accident,
i.e. one wishes the probability of an accident θ, say, to be smaller than
pacc. Since θ is unknown and uncertainty of its value is modelled by a
random variable Θ the issue is to check, on basis of available data and
experience, whether the predictive probability P(Θ < pacc) is high.

A number between 10−8 and 10−10 was first proposed for pacc, i.e. the
average waiting time for an accident is 108 to 1010 transports. In such a
scale the experienced 4000 safe transports looks clearly negligible and
hence the conclusion was: if one wishes to transport the waste with the
required reliability, one needs to develop transport systems with
maximum reliability.



How the information about 4 000 problem free transports affects our
believes about risk for accidents. Suppose that accidents happen
independently with probability θ. Then3

P(“No accidents for 4 000 transports” |Θ = θ) = (1− θ)4000 ≈ e−4000 θ,

and the posterior density f post(θ) = cf prior(θ)e−4000 θ will be close to
zero for any reasonable choice of the prior density and θ > 10−3. This
agrees with the conclusion of Kaplan and Garrick that the information of
4 000 release-free transport is quite informative:

“The experience of 4 000 release-free shipments is not sufficient
to distinguish between release frequencies of 10−5 or less.
However, it is sufficient to substantially reduce our belief that
the frequency is on the order of 10−4 and virtually demolish
any belief that the frequency could be 10−3 or greater”.

If we assume that the required safety is p = 10−8, then the information
of 4 000 accident-free transports is insignificant; on the other hand, the
required safety may never be checked.

3Here we use that for small θ, e−θ ≈ 1 − θ. In addition
limn→∞

(
1 − a

n

)n
= e−a.


